Two Simple Proofs of Winquist's Identity

نویسندگان

  • Chutchai Nupet
  • Sarachai Kongsiriwong
چکیده

We give two new proofs of Winquist’s identity. In the first proof, we use basic properties of cube roots of unity and the Jacobi triple product identity. The latter does not use the Jacobi triple product identity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Proof of Winquist's Identity

Winquist’s identity plays a vital role in the proof of Ramanujan’s congruence p(11n+ 6) ≡ 0 (mod 11). In this paper, we give a new proof of Winquist’s identity.

متن کامل

تأملی نو در نظریه عینیت ذات و صفات الهی

Critical investigation of Identity of essence and attributes of GodThe quality of the relationship between essence and attributes of God is one of the most important issues among islamic thinkers. One of the most important theories in this field is the theory of Identity of essence and attributes of God that divided in turn into two branches,I mean, external identification and conceptual ...

متن کامل

Rational Functions Certify Combinatorial Identities

This paper presents a general method for proving and discovering combinatorial identities: to prove an identity one can present a certi cate that consists of a pair of functions of two integer variables. To prove the identity, take the two functions that are given, check that condition (1) below is satis ed (a simple mechanical task), and check the equally simple fact that the boundary conditio...

متن کامل

Particle Seas and Basic Hypergeometric Series

The author introduces overpartitions and particle seas as a generalization of partitions. Both new tools are used in bijective proofs of basic hypergeometric identities like the q-binomial theorem, Jacobi’s triple product, q-Gauß equality or even Ramanujan’s 1Ψ1 summation. 1. Partitions In 1969, G. E. Andrews was already looking for bijective proofs for some basic hypergeometric identities. The...

متن کامل

I. Generalizations of the Capelli and Turnbull identities

We prove, by simple manipulation of commutators, two noncommutative generalizations of the Cauchy–Binet formula for the determinant of a product. As special cases we obtain elementary proofs of the Capelli identity from classical invariant theory and of Turnbull’s Capelli-type identities for symmetric and antisymmetric matrices.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2010